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Chiral secondary alcohols in which there is little steric or 
electronic differentiation between the two alkyl substituents 
flanking the hydroxyl group represent perhaps the most difficult 
class of simple molecules to synthesize in high enantiomeric 
excess.2 The asymmetric reduction of carbonyl compounds with 
baker's yeast is often a useful method for the preparation of such 
stereochemically defined secondary alcohols. However, several 
factors can greatly influence the synthetic utility of enzymatic 
procedures, including a complicated dependence of enantiomeric 
purity of the reaction products on specific reaction conditions 
and the limitation that only one enantiomer is accessible by these 
procedures.3 We now report an alternative procedure for 
preparing simple enantiomerically enriched secondary alcohols 
via the reduction of keto boronates utilizing a chiral ligand 
attached to the boron atom.4 This procedure constitutes an 
excellent example of 1,7-asymmetric induction in a carbonyl 
addition process.5 

In the present study, (lS,2S)-l,2-diisopropylethanediol 4-ke-
toalkyl boronates were used as models to test the hypothesis that 
an incoming nucleophile might be able to discriminate between 
the two faces of a ketone carbonyl during stereoelectronically 
favored axial attack on a kinetically active cyclic complex (Scheme 
I). Keto boronate starting materials necessary for our investi­
gation were synthesized in straightforward fashion in two steps 
from diisopropylbromomethyl boronate.6 Transesterification of 
this material with the chiral director (lS^S^-l^-diisopropyl-
ethanediol7 provided (15,2S)-diisopropylethanediol bromomethyl 
boronate. This halide was utilized along with zinc metal, CuCN, 
and trimethylsilyl chloride to effect a conjugate addition to various 
enones according to the elegant procedure of Knochel,8 thereby 
providing the materials needed for the study. 

Initial enantioselective reduction experiments employed the 
protocol used during previous studies when 1,3-asymmetric 
induction was examined in reduction of keto boronate substrates,4 

i.e., the reduction of lb was carried out using BH3-THF in THF 
at -78 0C, producing the diol 2b in 87% ee (S-isomer predom­
inant) .9 This auspicious result prompted a systematic investigation 
to develop optimized conditions for the reduction. After numerous 
combinations of reducing agents (including NaBH4, DIBAL, Red-
Al, and various mono- and dialkylboranes), reaction temperatures, 

and solvents (Et20, THF, CH2Cl2) were explored, the investi­
gation was continued with BHj-SMe2 in Me2S at 0 0C, which 
produced diol 2b in 92% ee (87% yield).10 Utilizing these 
optimized reaction conditions, diverse keto boronates could be 
reduced efficiently, providing diol products with a high degree 
of enantiomeric enrichment (Table I). 

In addition to the multitude of diverse reaction products which 
could conceivably be derived from the reduced boronate ester 
intermediate,4 the compatibility of functional groups on the keto 
boronate provides a convenient means for further useful trans­
formations. For example, the diol product derived from substrate 
Ie was converted directly to the tetrahydrofuran in 97% overall 
yield (eq 1). The tolerance of the process for other functional 
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groups (entries lf-h) suggests that appropriately substituted 
substrates could also be converted in a straightforward fashion 
to nitrogen heterocycles, cyclic hemiacetals, and lactones. 

As was the case in a related study examining 1,3-asymmetric 
induction,4 no direct evidence for the complexed cyclic species 
was obtained.11 However, the extraordinary high asymmetric 
inductions realized point to a highly ordered transition state. The 
origin of the diastereoselection is thus postulated to result from 
steric interactions between the isopropyl group of the boronate 
and the incoming nucleophile in the kinetically active complexed 
intermediate. The transition structure shown in Scheme I 
undoubtedly represents a simplified version of the true reaction 
coordinate traversed during the reaction. Most likely, the borane 
reducing agent reacts with the complexed ketone via a four-
centered transition state. The effect of solvent on the selectivity 
(with less basic solvents leading to dramatically lower diaste-
reoselectivities) suggests several rationalizations for the observed 
results. Basic solvents such as dimethyl sulfide form strong 
complexes with BH3, making them more sterically demanding 
than their less tightly bound counterparts. Consequently, there 
is greater discrimination in the transition state between the two 
limiting trajectories of attack on the carbonyl. An alternative 
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Table I. Results of the Diastereoselective BH3-SMe2 Reduction of 
Keto Boronates la-h 

substrate 
la 
lb 
Ic 
Id 
Ie 
If 
Ig 

lb 

R 
CH3 
"-C5Hn 
CsHu 
C4H5 
Cl(CH2)J 
NC(CHj)10 

O O 
H ^ ( C H j ) 4 

CH3O2C(CHj)4 

% isolated 
yield (2 + 3)" 

83 
87 
85 
95 
97 
81 
89 

95 

enantioselectivity 
(%ee)* 

85' 
92 

>98< 
97 
9 3 M 
97 
98 

>96 

" Refers to yields of purified diol, except for 2e (see eq 1). All new 
compounds have been fully characterized spectroscopically (1H NMR, 
13C NMR, IR), and elemental composition has been established by 
combustion analysis and/or high-resolution mass spectrometry.b De­
termined by 19F NMR of the crude Mosher diester unless otherwise 
specified. In all cases, the "F NMR spectra of the racemic Mosher 
diesters have also been measured to ensure adequate resolution in the 19F 
NMR spectra. 'Determined by 500-MHz 1H NMR of the multiplet 
corresponding to the methylene protons adjacent to the primary ester 
(4.15-4.36 ppm). * Determined by capillary GC analysis of the Mosher 
ester of the tetrahydrofuran derivative. 

explanation for the solvent effect is that the acyclic, unactivated 
form of the keto boronate (which would provide little diastere-
of acial bias in the reduction process) is less susceptible to reduction 
by more tightly bound, less reactive reducing agents like 
BH3-SMe2.

12 

The synthetic method described herein represents a unique use 
of a carbon-bound organometallic/ketone intramolecular complex 
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as a conformational control element in diastereoselective carbonyl 
addition reactions and should provide a useful method for the 
synthesis of simple, enantiomerically enriched 2° alcohols in which 
there is little steric or electronic differentiation between the alkyl 
groups flanking the prochiral carbonyl unit in the substrate. 
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